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INTRODUCTION

It has been recognized for a long time that observations of geomagneti-

cally trapped ions heavier than protons would provide unique insight into the

source(s) of the trapped radiation as well as the ensuing magnetospheric

processes of acceleration, redistribution and loss (Tverskoy, 1964; AWford,

1970; Cornwall, 1972; Krimigis, 1973; Blake, 1973). Furthermore it has re-

cently become evident that at times the heavy ion population is comparable to

that of protons and thus the heavy ions are not simply passive tracers but

contribute to magnetospheric dynamics (Fritz and Wilken, 1976; Young, 1979).

Present understanding of magnetospheric heavy ions has been reviewed

recently by Cornwall and Schulz (1979) and an extensive series of papers by

Fritz and Spjeldvik (Fritz and Spjeldvik, 1978, 1979; Spjeldvik and Fritz,

1978a, b, c) have presented the equatorial observations from Explorer 45.

First definitive CNO composition results have been presented by Hovestadt et

al. (1978) from ISEE 1. In this paper,heavy-ion data acquired aboard the low-

altitude polar orbiting S3-2 satellite are presented and compared with earlier

observations and theory.
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SATELLITE AND INSTRUMENTATION

The data presented in this paper were obtained from a heavy-ion telescope

which was part of the instrument complement of the S3-2 satellite. The S3-2

was a spin-stabilized satellite with the spin axis maintained normal to the

orbital plane; the satellite rotational period was 18.8 seconds. The S3-2 had

an apogee of - 1500 km, a perigee of - 230 km and an inclination of 96.30.

The heavy-ion telescope was described in some detail by Scholer et al.

(1979); the design was based upon a cosmic-ray experiment (Hovestadt and

Vollmer, 1971). Briefly it was a dE/dx, E telescope with a thin window pro-

portional counter as the dE/dx element and a silicon detector as the E ele-

ment. A second silicon detector behind the first vetoed penetrating the

particles. Table 1 gives the heavy ion telescope parameters of interest

here. Supporting instrumentation aboard the S3-2 included a proton telescope,

an electron spectrometer and a magnetometer.
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TABLE I

HEAVY-ION SENSOR PARAMETERS

Channel Particle Energy (MeV) Energy (MeV/nucleon)

a 1 alphas 0.95 - 1.42 0.237 - 0.355

a 2 alphas 1.42 - 2.03 0.355 - 0.508

a 3 alphas 2.03 - 2.89 0.508 - 0.722

hi Z > 4 > .250

h2 Z > 16 > 12

12



RESULTS

The orbital parameters of the S3-2 satellite were such that significant

fluxes of ions were measured between B = 0.25 gauss and B = 0.35 gauss. The

pitch-angle distributions of the ions were steep (see below) and as a result,

the majority of the particles were observed near B = 0.25 gauss.

Data in this paper were acquired in the period between 24 December 1975

and 3 March 1976. This time tnterval, near the beginning of the S3-2 mission,

was selected because the alpha-particle fluxes were observed to be nearly

constant during that time period at L! 4.25.

The magnetometer data were used to select locally mirroring ions for

analysis. Because of the steep pitch-angle distributions, the great majority

of the ions thus were included.

The He and CNO fluxes for E > 250 keV/nucleon and 0.25 4 B < 0.30 gauss

are plotted in Figure I as a function of L value. The vertical scale for the

CNO ions is displaced by a factor of 103 from that for the He ion; note that

the CNO/He ratio is generally less than 10- 4 . The general shape of both the

CNO and He flux profiles is very similar, with the peak intensity occurring in

the interval 3 C L < 3.5, in agreement with the results published by Van Allen

et al. (1970) for CNO and He ions with E > 0.3 MeV/nucleon and 0.15 < B 4 0.20

gauss. Equatorial CNO and He also are observed to have peak fluxes in this L

interval (Fritz and Spjeldvik, 1978; Spjeldvik and Fritz, 1978 c; Hovestadt et

al., 1978). Since the data in Figure I are plotted for a fixed B interval,

the equatorial pitch angle of the ions comprising the data decreases with

increasing L.

13
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Figure 1. Flux profiles are shown for CNO and He ions as a
function of L value for E > 250 keV/nucleon and
0.15 4 B < 0.20 gauss. The statistical uncertainty
in the He data points is smaller than the symbol;
the CNO error bars are shown explicitly. The curves

through the points are to guide the eye.
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The NO flux profile shown in Figure 1 indicates a marked turnup at

L > 4.5, and the He fluc profile shows a decrease in slope. The enhancements

at L > 4.5 appear to be related to the precipitation events of the type repor-

ted by Scholer et al. (1979); they are probably the residual ions which remain

trapped after energetic heavy-ion precipitation events.

The similar L dependence of the He and CNO fluxes are shown in a differ-

ent way in Figure 2; the CNO/He ratio is plotced as a function of L value for

ion energies gLeater than 250 keV/nucleon. This ratio is essentially constant

within the statistics, at a value of 6.7 x 10- 5, between L - 2.75 and L - 4.50

for 0.25 4 B 4 0.30 gauss, and may be contrasted with a solar wind value

of - 10-2 (Bame et al., 1975). The outer-zone, energetic ions have been shown

by Hovestadt et al. (1978) to be of solar origin based upon their near-

equatorial observations of a ratio of C/O > 1 at a few hundred keV/nucleon.

Thus there are strong selection effects at low altitude against the CNO ions

relative to He, similar to the situation for He ions relative to H (cf. review

by Cornwall and Schulz, 1979).

In Figures 1 and 2, CNO and He ions are compared at the same

energy/nucleon. It is possible that the physics of the situation is such that

the comparison should be made at the same energy/charge or the same total

energy, although the apparent solar wind sourde of the energetic (hundreds of

keV) heavy ions (Hovestadt et al., 1978) makes energy/nucleon a natural

choice.

The most common isotopes of He, C, N. and 0 are all A - 2Z nuclei. Thus

Figures I and 2 would remain the same in terms of energy/charge and could be

labeled as flux profiles for ion energies greater than 500 keY/nuclear

charge. However these ions are not expected to be totally stripped in the

15
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Figure 2. The CNO/He ion ratio is plotted as function
of L for E > 250 keV/nucleon. The error bars
are due to the counting statistics in the CNO data.
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magnetosphere (Cornwall, 1972; Spjeldvik, 1978) and, furthermore, would not

remain in a given charge state as they undergo radial diffusion and pitch

angle scattering. Unfortunately no experimental data is available now concer-

ning the actual ionic charge states and therefore plotting of the CNO/He ratio

in terms of energy/charge cannot be pursued further.

The heavy-ion sensor has a threshold of > 250 keY/nucleon for C, N and

0. Thus the total energy of an ion at the channel threshold depends upon the

identity of the ion. Hovestadt et al. (1978) have shown that C is the most

abundant member of the CNO population near the geomagnetic equator in the

energy range of a few hundred keY/nucleon. Therefore the CNO flux profile is

plotted in Figure 3 with that of He ions with an energy of > 3 HeY (12 x 250

keV).

An additional reason for assuming that the low-altitude CNO nuclei are

largely C is that various experimental measurements show that magnetospheric

processes strongly discriminate against ions with increasing Z when populating

the low-altitude magnetosphere. Thus one would expect C to be favored over 0

starting with an equatorial source dominated by C (Hovestadt et al., 1978).

The He ion measurements were fit with power-law spectra as shown in

Figure 4 in order to determine the He flux above 3 MeV since the third alpha

channel, cf. Table 1, ended at 2.89 HeV. There is some indication in the data

that the alpha particle spectra are flattening as the energy decreases; note

in Figure 4 that the middle data point tends to be above the power-law fit to

the three points. A flattening is not unexpected considering the known shape

of low altitude proton spectra (cf. Fennell and Blake, 1976) and the equatori-

al results from Explorer 45 (Fritz and Spjeldvik, 1978). However, considering

that only three energy channels are available and that a flattening at the

17
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4

observed energies is slight at best, the spectral fits were restricted to a

simple power law.

Figure 3 shows the peak of the > 3 MeV He profile occurs at a lower L

value than that of the CNO ions, and thus the CNO/He ratio as a function of L

will be much less flat than it was when compared at the same energy/nucleon.

These results are shown explicitly in Figure 5.

The helium flux is plotted as a function of B/Bo in Figure 6 for

3.00 < L C 3.25, and 0.95 4 E C 1.42 MeV. Similar plots were made for this

helium ion channel ( a 1) for L values between 2.50 and 4.00. The data in the

linear portion were fit in each case with (B/Bo)-n/2 to determine the helium

ion intensity as a function of the equatorial pitch angle of the ion. The

results are give in Table 2.

4
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Figure 5. The CNO/He ion ratio is plotted as a function of L
as in Figure 2 except for ions with a total energy
E > MeV.
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TABLE 2

INDEX OF RELITI ION PITCH-ANGLE DISTRIBUTIONS

n.95 4 E 4 1.42 MeV

L value n+ B/Bo range

2.50 - 2.75 5.2 10.5 - 14.5

2.75 - 3.00 6.2 14.0 - 20.0

3.00 - 3.25 7.1 19.0 - 27.0

3.25 - 3.50 7.3 24.0 - 37.0

3.50 - 3.75 6.1 31.0 -.47.0

3.75 - 4.00 5.2 39.0 - 58.0

+n is exponent in expression J( a ) sinn a0

23
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COMPARISON WITH OTHER RESULTS

The first and,at presentonly published measurements of geomagnetically

trapped CNO nuclei at low altitudes are from Injun 5 (Krimigis et al., 1970;

Van Allen et al., 1970; Randall, 1973). These data covered the time period

from late 1968 through early 1970 (Randall, 1973) and a detailed analysis was

performed for the period 1-23 Jan 1969 (Van Allen et al., 1970).

The S3-2 experiment gave a ratio of CNO/He of 6.5 x 10- 5 for

3.0 4 L C 3.5, 0.25 ( B 4 0.30 at E > 250 keV/nucleon whereas the Injun 5

experiment (Van Allen et al., 1970; Krimigis et al., 1970) gave a ratio of

CNO/He of 2.8 x 10 - 3 for 3.0 4 L 4 3.5, 0.15 • B 4 0.20 at E > 300 keV/nucle-

on. The difference between the two ratios is a factor of - 43. Within the

B/B o range covered by the S3-2 satellite, the CNO/He ratio did not show a

significant variation. Therefore it does not seem likely that the difference

between the S3-2 and Injun 5 results is due to the somewhat different B

ranges.

The Injun 5 measurements were made at the peak of the last solar. cycle

and the S3-2 results were obtained near solar minimum. Therefore the differ-

ence in the CNO/He ratio may be indicative of a strong solar cycle or other

temporal dependence. In this regard it should be noted that Randall (1973)

has shown that the observations by Injun 5 of the CNO/He ratio did show a

substantial variability in the late 1968-early 1970 time period, although the

ratio remained substantially above that seen by S3-2. However the H/He ratio

observed with S3-2 is comparable to that seen by the Injun 5 experiment

(Randall, 1973) and thus it appears that a temporal effect if it exists is

such as to reduce the CNO/He ratio without substantially affecting the l/He

ratio.

254 -s . b
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It can be argued that either the S3-2 instrument failed to measure CNO

nuclei that actually were present, or the Injun 5 experiment counted false

events. The confidence in the S3-2 heavy-ion instrument performance is high

because CNO nuclei were measured in substantial numbers under two different

on-orbit conditions. First, during an intense magnetospheric precipitation

event, CNO/He ratios as large as a few percent were observed (Scholer et al.,

1979). Second, during a solar particle event, a comparison of the measurements

of the S3-2 sensor over the earth's polar cap with a similar one aboard IMP-8

in the interplanetary medium gave good agreement. The two comparisons argue

strongly that the S3-2 instrument measured the CNO nuclei that were present in

the low-altitude outer zone. Van Allen et al. (1970) gave a detailed discus-

sion concerning sources of possible spurious CNO counts in the Injun 5 detec-

tor. They concluded that no significant source of background existed. There-

fore it appears that the CNO/He ratio at low altitude undergoes temporal

changes of orders of magnitude, although a certain conclusion will require

further measurements.

The heavy-ion fluxes observed by Injun 5 and 53-2 are compared in Table

3. The S3-2 data in Table 3 are from Figure 2 of this paper; the Injun 5 data

from Figure 2 of Van Allen et al. (1970). The He fluxes measured in the two

experiments can be seen to be quite similar whereas the CNO fluxes are not.

The S3-2 measurements were at somewhat lower energy but at higher B than those

of Injun 5; these differences would tend to compensate for each other. Thus

the change in the CNO/R ratio between the Injun 5 and S3-2 data set is most

likely due to a decrease in the CNO fluxes.

Explorer 45 observations were made near the geomagnetic equator and thus

cannot be directly compared with the S3-2 observations. However, the low-

altitude observations of S3-2 have been extrapolated to the geomagnetic equa-

26



TABLE 3

In Jun 5 S3-2

L .3.25; 0.15(5( 40.20 gauss L 3.25, 0.35 -0B 0.25

E > 300 keV/nucleon R > 250 keV/nuacleon

He 390 cm72-sec -sr-i 370 cm72-sec- -sr-I

CiNO 1., um2-sec 1l-sr- 0.025 coi--seeC1 -or-

27



tor under the (uncertain) assumption that the characteristics of the pitch-

angle distributions do not change with pitch angle. Since no data exists at

equatorial pitch-angles intermediate to the Explorer 45 and S3-2 data sets, a

more direct comparison cannot be made. The pitch-angle distributions for the

three alpha channels, cf. Table 1, were fit for 3.00 4 L 4 3.50 in the manner

shown in Figure 6. The resulting n-value (j - sine a ) is plotted in Figure 7

vs the mean helium ion energy. Also shown is the result from the Explorer 45

studies: n a log E9 .1 + 7 with E in MeV (T. A. Fritz, private communication,

1979). The agreement can be seen to be excellent.

Figure 8 gives the observed low-altitude helium ion spectrum and the

extrapolated equatorial spectrum calculated using the pitch-angle indices

shown in Figure 7. The increase of the n-value with the energy of the helium

ion results in a "turn-over" in the equatorial energy spectrum. Indeed a flat

equatorial spectrum is observed by Fritz and Spjeldvik (1979). However the

extrapolated S3-2 helium fluxes are not in good agreement; they are three

orders of magnitude larger than the Explorer 45 observations I Note that the

Explorer 45 observations were made approximately four years before the S3-2

ones, during a selected quiet period. In addition to temporal variations in

the helium ion intensities, it is quite likely that differences between the

Explorer 45 observations and the S3-2 extrapolations are due to the fact that

the pitch-angle distribution varies over the field line from near the equator

(Explorer 45) to near the top of the atmosphere (S3-2). Such differences have

been seen in measurements made aboard OVI-14 and OVI-19 (Fennell et al., 1974;

Fennell and Blake, 1976).

Another difference between the Explorer 45 equatorial data and the low-

altitude S3-2 observations is in the variation of pitch-angle index with L

value. The S3-2 data show a significant change (Table 2) whereas the equato-

28
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Figure 7. A plot of the pitch-angle distribution index

n (j a sinn a) for the three alpha-particle

channels as a function of the mean channel

energy. The solid line is a fit to explorer 45

results (T. A. Fritz, private communiLr ,on, 1979).
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rial data do not (Fritz and Spjeldvik, 1979). Considering the very small

equatorial pitch angles of the helium ions observed by S3-2, especially at the

larger L values, a flattening of the distribution is not unreasonable.

31



CONCLUSIONS

(1) The extremely low value of the CNOIHe ratio observed by S3-2 at low

altitude compared with the muich larger ratio observed near the geomagnetic

equator (Hovestadt et al., 1978; Spjeldvik and Fritz, 1978c) makes it clear

that magnetospheric processes strongly discriminate against ions with

increasing mass in populating the low-altitude magnetosphere, as is true in

the case of the He/H ratio. Fennell et al. (1974) argued that if the low-

altitude magnetosphere is populated in energetic ions by pitch-angle

scattering from the equatorial regions with negligible cross-L diffusion at

low altitude regions, the observations could be understood as naturally

rising from a reduced effectiveness of pitch-angle scattering in the case of

the heavier ions. This scenario still appears reasonable.

(2) Comparisons with other, earlier measurements show agreement in some

areas and disagreement in others. The reasons for these differences cannot be

determined from presently available data. A major obstacle to understanding

is the lack of simultaneous measurements; the data clearly show a substantial

time dependence. Furthermore a given data set does not cover all pitch

angles. Finally, the bulk of the energetic ion population in the magneto-

sphere lies at energies below those discussed here; no measurements exist yet

at the lower energies. The importance of the OPEN program for dealing with

the present questions can be seen clearly.
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LADORATMR OPRATIOIIS

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical Investigations necessary for the evaluation and
application of scientific advances to nm military concepts and system. Ver-

satility and flexibility have been developed to & high degree by the laborato-
ry personnel In dealing with the many problems encountered In the Nation's

rapidly developing space system. Expertise in the lateat scientific develop-
ments is vital to the accomplishment of tasks related to these problem. The

laboratories that contribute to this research are:

Asrophysics Laboratory: Aerodynamic@; fluid dynamics; plaemdynsmics;
chemical kinetics; engineering mechanics; flight dynamics; heat transfer;
high-power gas lasers, continuous and pulsed, IN, visible, UV; laser physics,
laser resonator optics; laser effects and countermeasures.

Cheiscry and Physics Laboratory: Atmospheric reactions and optical heck-
g. .!nds; radiative transfer and atmospheric transmission; thermal and state-
specific reaction rates In rocket plowse; chemical thermodynamics and propul-
sion chemistry; laser Isotope separation; chemistry and physics of particles;
space environmental and contamination effects on spacecraft materials; lubrica-
tion; surface chemistry of Insulators and coafuctore; cathode materials; sen-
sor materials and sensor optics; applied lae spectroscopy; atomic frequency
etaniardol pollution and toxic materials monitoring.

Slectrnnice Research Laboratory: Xlectromagnetic theory and propagation
phenomena; microwave and seiconductor devices and Integrated circuits; quart-
t.m electronics, lasers, and electro-optIcs; commnilcation sciences, applied
electronics, superconducting and electronic device physical millimater-wove
and far-infrared technology.

materials Sciences lbatr:Development of am materials; composite
mterials; graphite end eremCs; polymeric materials; weapons effects said
hardened materials; materials for electronic devices; dimensionally stable
materials; chemical and structural analyses; stresw corrosion; fatigue of
metals.

8 cience taoro Atmospheric and Ionospheric physics, radia-
tion rem at: ses ,ssisy ad cemposition of the atmosphere, aurors
and airglw;. magnetoepheric physics, coemic rey. generation end propagation
of plasma waves In the smogstoephere; solar physics, x-ray astronomy, the effects

of unclear wiplosiona, magnetic stoems. emd solar activity on the earth's
atmosphere, Ionosphere, ami esgastosphere; the effects of optical, electrmwg
metic, ad partieulate radiatie n * pace em spece system.
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